作者单位
摘要
上海理工大学 光电信息与计算机工程学院, 上海 200093
提出了一种基于耦合式光电振荡器的动态腔长长时稳定控制方案,当光谐振腔腔长变化时,通过同相正交(in-phase/quadrature,I/Q)混频器测量光谐振腔内选定两点的谐振相位变化量,反馈控制光电再生腔的光延迟线进行再生腔长跟随补偿,实现可变腔长的耦合式光电振荡器的锁模控制输出,从而将变化的谐振腔腔长转化为变化的谐振频率进行精密测量。经过系统实验,当谐振腔长变化时,振荡器可实时锁定输出可变的微波信号,并保持边模抑制比优于47.26 dB,1 h内功率抖动小于0.28 dB,锁定相位误差抖动在±1.5°以内。
耦合式光电振荡器 再生锁模 腔长控制 I/Q混频 coupled optoelectronic oscillator regenerative mode-locking cavity length control in-phase/quadrature mixing 
光学仪器
2023, 45(1): 38
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
针对目前低维材料转移方案中过程复杂和衬底适应性差的难题,提出了一种常温常压下基于柔性聚合物薄膜聚二甲基硅氧烷(polydimethylsiloxane, PDMS)的低维材料定点转移方法。PDMS柔性膜的受力形变是实现其与不同衬底紧密贴合的基础,针对不同的目标衬底,仅需要更换对应的衬底微调系统盖板,结合三维位移机械系统,即可实现一维和二维材料的通用定点转移。该方法避免了转移过程中的真空吸附及衬底加热等严格条件,降低了材料的定点转移难度并提高了其稳定性和通用性。此外该方法也可实现低维材料同质结或其它垂直结构的构建,从而极大提高低维材料结构的丰富性。
转移系统 定点转移 半导体纳米线 过渡金属硫化物 同质结 transfer system fixed-site transfer semiconductor nanowires transition metal dichalcogenides homostructure 
光学仪器
2022, 44(6): 66
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
针对传统微纳光纤直径测量方法操作复杂、重复性差且易于损伤光纤等问题,开发了一套基于机器视觉的微纳光纤直径测量系统。首先,对系统采集的图像进行预处理和二值化分割,其次,通过Canny边缘算子实现微纳光纤边缘初定位,最后,基于改进Zernike矩的亚像素检测方法精确定位了亚像素级边缘。此外还提出了结合Hough变换与最小二乘法的算法拟合亚像素级边缘点的方案,将系统微纳光纤直径测量精度提升至纳米级。实验测量结果表明,该系统可实现3.51%以内误差的自动化测量,运行时间为2.671 s,更适用于微纳光纤尺寸的高精度实时测量。
微纳光纤 直径测量 机器视觉 图像分割 边缘检测 micro-nano fiber diameter measurement machine vision image segmentation edge detection 
光学仪器
2022, 44(1): 1
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
为了简化微泡腔的制备工艺,在传统 $ \text{C}{\text{O}}_{\text{2}} $激光双向加热方案的基础上,采用 $ \text{C}{\text{O}}_{\text{2}} $激光单点加热毛细管。通过精确控制加热温度和气体流速,制备出半球形的微泡腔,进而通过调节激光光斑,增加加热面积的方式制备出球形的微泡腔。使用光学显微镜和原子力显微镜(AFM)对制备的球形微泡腔进行表征,并通过COMSOL仿真验证了所制备微泡腔的性能。所制备的微泡腔表面光滑,壁厚最薄处可达到亚微米量级。研究结果表明,通过 $ \text{C}{\text{O}}_{\text{2}} $激光单点加热制备的微泡腔的壁厚存在轻微的不均匀性,但其谐振Q值仍然较高,可广泛应用于传感领域。
CO2激光 单点加热 球形微泡腔 谐振品质因数 CO2 laser single-spot heating spherical microbubble resonant quality factor 
光学仪器
2021, 43(2): 55
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
为了解决硒化镓(GaSe)晶体制备困难、化学性能差的问题,对GaSe晶体传统的化学汽相沉积制备方法进行了改进,采用移动加热源法制备GaSe晶体。搭建了GaSe晶体的制备装置,通过单片机精确调控制备晶体的高温炉的加热温度、移动位置等参数,并采用光学显微镜和原子力显微镜对所制备的GaSe晶体进行辅助表征。研究表明,利用移动加热源法可以制备出表面光滑且尺寸较大的单层二维GaSe晶体。由于对机电设备实现了自动精密移动,可对单层二维GaSe晶体实现高质量大批量的制备,有利于GaSe晶体在光电子学和纳电子学中的广泛应用。
单层GaSe 化学汽相沉积法 移动加热源 机电设备 自动精密移动 monolayer GaSe chemical vapor deposition method moving the heating source electromechanical equipment automatic precision movement 
光学仪器
2020, 42(2): 50
作者单位
摘要
上海理工大学光电信息与计算机工程学院, 上海 200093
在对微纳材料光学特性表征中, 需要获得分辨率更高的波长和强度的荧光图像。普通的显微镜无法满足测试的要求, 因此将普通的成像显微镜、光谱仪以及纳米移动台组成激光扫描显微镜成像系统, 并利用 LabVIEW开发了一套完整的集二维扫描采集与信号图像处理一体的系统上位机软件。扫描采集过程使用了低通滤波等数字信号处理方法消除光谱仪信号噪声的影响。利用本系统测量硒化镉纳米带、单层二硫化钼得到了荧光强度图像以及荧光峰值波长图像, 能分辨出最小波长为 0.03 nm的荧光。将采集长度与实际长度进行比较并分析荧光强度差异, 取得了较好的效果。
激光扫描成像 光谱仪去噪 荧光峰值波长图像 荧光强度图像 Laser scanning imaging LabVIEW LabVIEW spectrometer denoising fluorescence peak wavelength image fluorescence intensity image 
光学仪器
2019, 41(4): 63
Author Affiliations
Abstract
Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), University of Shanghai for Science and Technology, Shanghai 200093, China
We demonstrate an effective approach of mode suppression by simply using a tungsten probe to destroy the external neck surface of polymer microbottle resonators. The higher-order bottle modes with large axial orders, spatially located around the neck surface of the microresonator, will suffer large optical losses. Thus, excitation just with an ordinary free-space light beam will ensure direct generation of single fundamental bottle mode lasers. This method is with very low cost and convenient and can obtain high side-mode suppression factors. Our work demonstrated here may have promising applications such as in lasing and sensing devices.
140.3570 Lasers, single-mode 140.3945 Microcavities 160.5470 Polymers 
Chinese Optics Letters
2019, 17(12): 121401
作者单位
摘要
上海理工大学光电信息与计算机工程学院, 上海 200093
为了解决微纳光纤之间的结构稳定性差的问题, 使用 CO2激光作为加热源, 加热两根重叠在一起的微纳光纤, 并在显微镜下观察其熔接情况, 最终将两根微纳光纤熔接成一根, 而且熔接点的光纤表面光滑, 直径均匀。通过 CO2激光加热的方法, 实现了微纳光纤高质量的熔接, 增加了微纳光纤之间的机械稳定性, 使其更容易制作出纳米光子器件。
微纳光纤 倏逝波耦合 激光熔接 micro-nano optical fiber evanescent wave coupling laser welding 
光学仪器
2019, 41(1): 24

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!