作者单位
摘要
南京邮电大学 集成电路科学与工程学院, 南京 210023
为了研究电容式MEMS微波功率传感器悬臂梁的非线性运动, 建立了MEMS悬臂梁在空间域上的弯曲特性模型, 综合考虑静电力、轴向应力以及残余应力对悬臂梁非线性运动的影响, 求解得到动力学微分方程。在此基础上研究在不同杨氏模量、驱动电压和残余应力下悬臂梁的弯曲特性, 解析得到对应的悬臂梁弯曲特性曲线与轴向应力曲线。使用有限元分析软件ANSYS对不同驱动电压下的悬臂梁下拉位移进行仿真, 并对仿真结果与解析结果进行比较。结果表明, 在驱动电压从10 V到20 V的变化过程中, 仿真结果与模型解析结果具有一致的趋势, 两者间的最大误差仅有8.81%。对电容式MEMS微波功率传感器的悬臂梁弯曲特性的研究具有一定的参考价值和指导意义。
微波功率传感器 悬臂梁 弯曲特性模型 MEMS MEMS microwave power sensor cantilever beam bending characteristic model 
微电子学
2023, 53(5): 924
作者单位
摘要
南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院, 南京 210023
为了改善在线式MEMS微波功率传感器的灵敏度特性,设计了一种新型双悬臂梁结构的MEMS微波功率传感器。该结构将测试电极和锚区设计在中心信号线的两侧。建立了双悬臂梁集总电路等效模型,研究了双悬臂梁结构的微波功率传感器的微波特性。构建了枢纽式双悬臂梁静力学模型,研究并分析了新型悬臂梁结构的过载功率与灵敏度。结果表明,相比于测试电极和锚区位于信号线同侧的传统单悬臂梁结构,新型双悬臂梁结构的灵敏度提升了6~8倍。这在一定程度上解决了电容式微波功率传感器检测灵敏度较低的问题。
微波功率传感器 电容式 双悬臂梁结构 灵敏度 microwave power sensor capacitive double cantilever beam structure sensitivity MEMS MEMS 
微电子学
2023, 53(2): 304
作者单位
摘要
南京邮电大学 集成电路科学与工程学院, 南京 210023
为了提高热电式微波功率传感器的传热效率,改善传感器的性能,对热电式微波功率传感器的衬底结构进行了优化设计,得到了最优的衬底结构尺寸。首先研究衬底厚度对热电式微波功率传感器的影响,然后根据得到的最优衬底厚度,研究基底膜位置及尺寸对热电式微波功率传感器性能的影响,最后对所得最优衬底结构传感器的微波特性以及电磁场分布进行研究。结果表明,当传感器衬底的结构尺寸最优时,传感器的最高温度达到352.76 K,S参数小于-20.62 dB。该结构不仅减少了热量在衬底的堆积,提高了负载电阻到热电堆的热传输效率,而且具有良好的微波特性。
热电式 功率传感器 基底膜 thermoelectric power sensor MEMS MEMS substrate membrane 
微电子学
2022, 52(6): 1071
作者单位
摘要
南京邮电大学 电子与光学工程学院、微电子学院, 南京 210023
为了得到热电式MEMS微波功率传感器的三维温度分布和时间常数,建立了传感器的三维等效电路模型。首先根据热-电参数的等效关系和传感器的结构建立等效电路模型。接着,对等效电路的单元模块进行理论分析。最后,根据建立的三维等效电路模型研究传感器的温度分布和响应时间。传感器的灵敏度为0.076 mV/mW @10 GHz,时间常数为56.24 μs。测试结果表明,传感器的灵敏度为0.06 mV/mW @10 GHz,时间常数为85 μs。所建立的三维等效电路模型不但可以得到微波功率传感器的响应时间,而且可以准确地得到热量在衬底的耗散情况。因此,本研究对热电式MEMS微波功率传感器设计具有一定的参考价值。
功率传感器 等效电路 温度分布 响应时间 MEMS MEMS power sensor equivalent circuit temperature distribution response time 
微电子学
2022, 52(4): 663
作者单位
摘要
南京邮电大学 电子与光学工程学院、微电子学院, 南京 210023
为了研究热电式MEMS微波功率传感器封装后的性能,提出了一种COB技术的封装方案。首先,采用有限元仿真软件HFSS仿真封装前后的微波特性;然后,基于GaAs MMIC技术对热电式MEMS微波功率传感器进行制备,并对制备好的芯片进行封装。最后,对封装前后传感器的微波特性及输出特性进行测试。实验结果表明,在8~12 GHz频率范围内,封装后回波损耗小于-10.50 dB,封装前的灵敏度为0.16 mV/mW@10 GHz,封装后的灵敏度为0.18 mV/mW@10 GHz。封装后的热电式微波功率传感器输出电压与输入功率仍有良好的线性度。该项研究对热电式MEMS微波功率传感器封装的研究具有一定的参考价值和指导意义。
热电式 微波功率传感器 封装 thermoelectric type microwave power sensor package MEMS MEMS COB COB 
微电子学
2022, 52(4): 635
作者单位
摘要
南京邮电大学 电子与光学工程学院、微电子学院, 南京 210023
耦合式MEMS微波功率传感器的集**数模型可用于分析并计算器件的微波特性,是设计传感器相关结构尺寸的重要参考依据。针对目前传感器日益复杂化的阻抗匹配结构,对现有的集**数模型进行了优化,并进行了相关理论推导。实验结果表明,优化后的模型计算出的反射系数最大误差为6.0 dB,插入损耗最大误差为0.7 dB,模型准确度相较于优化前有了明显的提升。因此,优化的集**数模型对耦合式MEMS微波功率传感器的设计与优化具有一定的应用价值与参考意义。
微波功率传感器 集**数模型 优化 MEMS MEMS microwave power sensor lumped parameter model optimization 
微电子学
2021, 51(2): 230
作者单位
摘要
南京邮电大学 电子与光学工程学院、微电子学院, 南京 210023
为了提升电容式MEMS微波功率传感器的测量灵敏度,本文充分利用传感器的内部空间结构,提出了一种基于对称双悬臂梁结构的电容式微波功率传感器。根据对称式双梁结构的特点,建立了对称双悬臂梁结构的枢纽式机电模型。研究和分析了对称双悬臂梁结构的测量灵敏度和过载功率。实验结果表明,在悬臂梁初始间距相同的条件下,对称双梁结构的测量灵敏度相较传统单梁结构提高了3倍; 同时,通过改变悬臂梁的初始间距,可以实现较大范围内传感器测量灵敏度与过载功率两项指标的折中与转化,以满足更加广泛的设计需求。
对称双悬臂梁 功率传感器 灵敏度 MEMS MEMS symmetric double cantilever beam power sensor sensitivity 
微电子学
2021, 51(3): 418
作者单位
摘要
南京邮电大学 电子与光学工程学院, 江苏 南京 210023
为了降低双通道MEMS微波功率传感器的回波损耗, 提高传感器的测量精度, 对MEMS悬臂梁的匹配特性进行了研究。首先, 通过双通道MEMS微波功率传感器结构构建S参数的理论解析模型, 分析了双通道MEMS微波功率传感器的匹配特性, 得到了MEMS悬臂梁的间距和回波损耗系数S11的关系; 接着利用有限元软件HFSS进行仿真, 并和理论结果比较; 然后, 设计并制作了双通道微波功率传感器; 最后, 对该传感器的匹配特性进行了测试和分析。实验结果表明: 当MEMS悬臂梁的间距为1. 6 μm时, 该传感器在测量8~12 GHz频率内的微波信号时, 回波损耗小于-19 dB。理论和仿真结果较为相符, 因此S参数的理论解析模型可以较好地反映双通道MEMS微波功率传感器的匹配特性, 对双通道MEMS微波功率传感器的设计具有一定的指导意义。
微机电系统 功率传感器 双通道 悬臂梁 匹配特性 回波损耗 Micro-Electro-Mechanical System (MEMS) power sensor double-channel cantilever impedance matching return loss 
光学 精密工程
2018, 26(9): 2133
作者单位
摘要
1 北京航空航天大学仪器科学与光电工程学院, 北京100083
2 华北电力大学电气与电子工程学院, 北京 102206
综述了现有各种光学电功率传感器的传感机理和主要特点, 提出了电功率传感器研究中存在的问题、方法和研究方向。光学电功率传感器一般具有测量范围大、响应频带宽和电气绝缘能力强等优点。根据光载波中是否含有电功率调制信号, 可将光学电功率传感器分为直接调制型和间接调制型两类;与光学电压、电流传感信号相比, 直接调制型光学电功率传感信号更加微弱, 且其有功功率传感信号为直流信号, 易与光载波强度波动混淆。对于单晶体型电功率传感器, 一般要求传感介质兼具线性电光、磁光效应, 或者具有双横向电光Pockels或Kerr效应;此外, 选择传感介质时应全面考虑其多重光学效应及其相互关系, 并应考虑如何避免或抑制传感信号的温度漂移。光学电功率传感器在智能电网、微波功率及电磁脉冲功率测量等领域具有潜在的应用前景。
光学传感器 电功率传感器 微波功率测量 电光效应 磁光效应 晶体 
光学学报
2018, 38(3): 0328011
作者单位
摘要
西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
基于真空二极管设计了一种X波段大功率微波检波器,该检波器主要由真空二极管、BJ-100波导、调谐螺栓、低通滤波器和直流电源组成,其工作频率可根据需要在8.6~9.8 GHz范围内调谐。重点阐述该型大功率微波检波器的结构设计、实验室标定及辐射场测量实验结果,研究了不同脉宽和不同灯丝电压与检波特性的依赖关系。实验结果表明: 该型检波器具有承受微波脉冲功率高(大于7 kW)、响应快(响应时间小于2.0 ns)、动态范围大、输出信号幅度高(可达数十V)、不需要同步信号等特点,适用于在高功率微波干扰环境下的单次和高重复频率脉冲功率测量。
高功率微波 真空二极管 微波检波器 功率测量 high power microwave vacuum diode microwave power sensor power measurement 
强激光与粒子束
2014, 26(9): 093002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!