赵睿 1,2毛飞 1钱晖 1,*杨晓 2[ ... ]张兴栋 2
作者单位
摘要
1 1.江苏大学 医学院 检验系, 镇江 212013
2 2.四川大学 国家生物医学材料工程技术研究中心, 成都 610064
天然骨组织由有机纳米材料胶原纤维和无机纳米材料羟基磷灰石组成, 具有独特的微纳米结构以及传统人工合成材料无法比拟的生物功能和力学性能优势。在组织工程和再生医学的研究中, 模拟天然骨组织层次特征的微纳米结构生物材料是研究热点之一。近年来, 研究人员发现微纳米结构生物材料能有效调节细胞增殖、分化和迁移, 促进细胞成骨分化, 进而促进体内骨组织再生。本文综述了利用天然骨组织层次特征指导材料分层设计的研究进展以及微纳米结构生物材料的细胞相互作用特性和在骨组织工程中的应用, 以期为生物材料的设计提供新思路。
微纳米结构 骨再生 生物材料 micro-/nano-structure bone regeneration biomaterial 
无机材料学报
2023, 38(7): 750
作者单位
摘要
吉林大学电子科学与工程学院,集成光电子学国家重点实验室,吉林 长春 130012
Overview: With the development of industry, laser fabrication has become one of the important technologies for welding, cutting, surface processing, and other advanced manufacturing areas. At the same time, the pursuit of structures miniaturization, devices integration, and high precision has put forward more stringent requirements for laser fabrication technologies. Due to the advantages of stable mechanical and chemical properties and unique photoelectric properties, hard and brittle materials have been widely used in aerospace, the photoelectric industry, et al. Laser fabrication is an ideal technology for hard and brittle materials processing due to its high precision, high energy, and non-contact properties. In order to achieve the removal of hard and brittle materials, high laser energy is usually required, resulting in low fabrication accuracy and poor surface quality. As an improved laser processing method, liquidassisted laser fabrication can effectively improve fabrication accuracy and surface quality. The processing characteristics and material removal principles of three different liquid-assisted laser processing technologies are summarized in this review. According to the different functions of the medium through which the laser penetrates and the kinds of liquid, liquid-assisted laser fabrication technology can be divided into Laser ablation in liquid (LAL), laser-induced backside wet etching (LIBWE), and etching-assisted laser modification (EALM). The auxiliary liquid of Laser ablation in liquid is mostly water, which mainly plays the role of cooling and removing debris. The auxiliary liquids used by laser-induced backside wet etching include organic solvents, acid-base solutions, inorganic salts, and other liquids, which play different roles according to different liquids. The etching-assisted laser modification mainly uses an acid or alkaline solution as an auxiliary liquid to remove laser-modified materials. Different methods and auxiliary liquids have different mechanisms in the methods. Therefore, almost any material can be processed by choosing suitable methods and auxiliary liquids, including photosensitive glass, silicon crystal, sapphire, and other transparent hard brittle materials. Here, we summarize the fabrication technologies and fabrication parameters for different materials. The development and applications of liquid-assisted laser fabrication technologies in the fields of micro-optical components, microfluidic devices, and drilling and cutting are introduced. Finally, the challenges of the technology are discussed.
激光加工 硬脆材料 液体辅助制造 微/纳米结构 laser fabrication hard and brittle materials liquid assisted fabrication micro/nano structures 
光电工程
2023, 50(3): 220328
郑志霞 1,**李文芳 1,*张丹 2曹一青 1[ ... ]蔡丽晗 1
作者单位
摘要
1 莆田学院机电工程学院,福建 莆田 351100
2 厦门大学航空航天学院,福建 厦门 361005
针对激光刻蚀的金属表面短期内的超亲水性及较长的润湿性转变周期问题,通过优化飞秒激光刻蚀参数在紫铜表面构造出微/纳米分层的乳突状结构,制备了超亲水样品。样品在水汽环境下高温热氧化3 h后,放置于150 ℃的管式炉中用乙醇辅助退火15 min,测得其表面水接触角由退火前的(4.0±0.7)°提高到(150.7±0.6)°,样品表面由超亲水快速转变为超疏水,极大提高了润湿性转变效率。
激光光学 激光烧蚀 润湿性 微纳米结构 水接触角 润湿性转变 
激光与光电子学进展
2022, 59(7): 0714010
作者单位
摘要
清华大学材料学院激光材料加工研究中心, 北京 100084
自然界中存在大量具有特殊微纳结构的多尺度表面,如荷叶、水稻叶、玫瑰花瓣、壁虎脚趾、鲨鱼皮、蝴蝶翅膀、昆虫复眼等,这些表面具有超疏水、超亲水、结构色、高敏感性、生物相容性等多种神奇功能。如何人工制备出仿生微纳米结构,从而实现师法自然和超越自然的目标,是材料与制造领域的重大课题之一。超快激光加工是灵活制备微纳米结构的可靠手段,但衍射极限制约了其纳米结构制备能力,且制备效率低下。本团队在过去的10多年中,在拓展超快激光微米与纳米结构制备能力以及仿生微纳结构的功能化方面开展了系统研究,发展了一系列超快激光微纳结构制备与双级精确调控新方法,探索了超快激光制备的微纳结构表面在超疏水、高抗反射、高敏感性和生物医学检测等领域的创新应用。超快激光制备形态多样的微纳米结构并实现仿生功能化是一个富有吸引力的研究方向,但仍然面临着诸如突破衍射极限以实现1~100 nm典型纳米结构的制备、功能化微纳结构的设计与制备以及大面积微纳结构的高效制备等挑战。本文为《清华大学建校110周年之光耀清华》专辑而撰写,旨在总结过去、面向未来,与本领域同仁一起交流探讨,共同推进本研究领域的发展。
激光技术 微纳米结构 特殊浸润性表面 抗反射表面 水分解制氢电极 表面增强拉曼散射 
中国激光
2021, 48(15): 1502002
作者单位
摘要
电子科技大学电子薄膜与集成器件国家重点实验室,四川成都 611731
研究了由微米金字塔阵列和纳米级氧化铝 (Al2O3)薄膜构成的微纳复合结构对硅基光控太赫兹调制器调制性能的增强效应和机制。实验表明,相对于半导体硅片,硅表面的微米金字塔阵列能够显著减少激光反射率,提高对激光的利用率,且能增加太赫兹波的调控面积。更重要的是,金字塔阵列上沉积的纳米级厚度 Al2O3薄膜还能进一步降低激光反射率,并能明显提升太赫兹波的调制效果,在 95.5 mW/mm2的激光功率密度下,其调制深度可达 91.2%。该光控太赫兹调制器在低激光功率下拥有高调制深度,在太赫兹成像和通信领域都有巨大的应用潜力。
太赫兹波 微纳米结构 光控 调制器 terahertz wave micro-nano structure optically controlled modulator 
太赫兹科学与电子信息学报
2021, 19(1): 7
作者单位
摘要
清华大学材料学院激光材料加工研究中心, 北京 100084
相对于使用化石燃料的制氢方式,电解水不存在碳排放,是一种真正绿色环保的制氢技术,对发展氢能源具有重要意义。电解水的能耗和成本都较大,需要使用高效稳定的非贵金属催化剂,以降低过电压。激光具有高效、灵活、非接触、高度可控等优点,近年来已成为制备电解水催化剂的有效工具,但在一体化微纳米结构催化电极的制备方面存在不足之处。本文基于激光微纳制备方法,总结了激光液相合成粉末催化剂和激光制备自支撑微纳米结构催化电极的最新研究进展,并讨论了该领域未来的研究方向。
激光技术 微纳米结构 电解水 析氧反应 析氢反应 
中国激光
2021, 48(2): 0202008
边玉成 1,2,**王宇龙 3肖轶 4,***张迎辉 3[ ... ]姚成立 5
作者单位
摘要
1 中国科学技术大学微电子学院, 安徽 合肥 230026
2 中国科学技术大学微纳研究与制造中心, 安徽 合肥 230026
3 中国科学技术大学精密机械与精密仪器系, 安徽 合肥 230026
4 南通职业大学机械工程学院, 江苏 南通 226007
5 合肥师范学院化学与化学工程学院, 安徽 合肥 230601
飞秒激光直写技术相比于传统加工方式以及其他先进的微纳米加工手段在可控微纳米结构加工方面具有一定的优势,如无需掩模、适合任意材料、热效应小等,因此被用来制备多样化的仿生微纳米结构表面,开发各种领域的应用,如自清洁、油水分离、水雾收集等。分析了利用飞秒激光在不同材料上制备多样微纳米结构的形成机理和设计思路,总结了国内外有关通过飞秒激光制备仿生微纳米表面的最新研究进展,并从表面润湿性的相关概念及理论模型、飞秒激光可控制备多样微纳米结构以及相关工业生活应用等方面进行了探索研究。最后分析了目前飞秒激光加工技术在微纳米制造领域存在的困难和挑战,并对未来其在相关领域的发展进行了展望。
激光光学 飞秒激光 微纳米加工 可控微纳米结构 特殊润湿性 仿生应用 
激光与光电子学进展
2020, 57(11): 111406
作者单位
摘要
清华大学 材料学院 激光材料加工研究中心, 北京 100084
材料表面抗反射性能在太阳能利用、光电子产品、红外传感和成像、**隐身、以及航空航天等领域均具有重要应用价值。文中对材料表面抗反射特性的重要用途、人工实现路径、表面抗反射结构的研究现状及存在的问题等做了详细的论述。目前, 国内外学者已经利用碳纳米管涂层和硅表面针状纳米结构实现了优异的超宽波谱抗反射性能。但迄今为止, 金属表面微纳米结构的抗反射能力仍有很大的改善空间。作者所在的清华大学材料学院激光加工研究团队运用新一代高功率高频率超快激光, 在金属表面制备出多种类型的特征微纳米结构, 对其抗反射性能进行系统研究, 实现了紫外-可见、紫外-近红外、紫外-中红外与紫外-远红外分别为2%、6%、5%和8%的超宽光谱超低反射率, 并且在0~60°入射角度范围内无明显变化。进一步在微纳米结构基础上发展了“宏-微纳-纳米线”多级多尺度复合结构, 在16~17 μm波长处的总反射率低至0.6%, 在14~18 μm波长处总反射率不超过3%。上述优异超宽光谱抗反射性能预期具有良好应用前景。
抗反射 微纳米结构 超快激光 antireflection micro-nano structure ultrafast laser 
红外与激光工程
2016, 45(6): 0621001
作者单位
摘要
1 中科院固体物理研究所,中科院材料物理重点实验室,安徽省纳米材料与技术重点实验室,合肥 230031
2 中国科学技术大学,合肥 230026
表面增强拉曼散射(surface-enhanced Raman scattering,简称为SERS)能够提供有机分子的指纹特征信息,且具有灵敏度高和响应时间快等优点,是一项具有发展前景的分析技术。纳米结构SERS基底是获得SERS信号的关键。本文利用简便的电沉积方法在硅片上制备大面积的金微/纳颗粒阵列。金纳米颗粒之间存在大量狭小的纳米间隙,在光激发下产生大量的SERS“热点”,从而具有很高的SERS灵敏度。而且,这种金微/纳结构具有高结构稳定性和化学稳定性。该结构对浓度低至10-12M的罗丹明6G(R6G)具有很高的SERS灵敏性,且具有很好的SERS信号均匀性。利用这种微/纳结构阵列SERS基底,实现对水中低浓度农药甲基对硫磷的成功检测。这表明我们制备的金微/纳颗粒阵列在检测环境中的毒性有机物污染物方面具有潜在的应用前景。
金微/纳米结构 表面增强拉曼散射 表面增强拉曼散射基底 甲基对硫磷 电沉积法 Au micro/nanostructures surface-enhanced Raman scattering(SERS) SERS substrate methyl parathion electrodeposition 
光散射学报
2016, 28(2): 116
任乃飞 1,*林康 1,2张志研 2梁浩 2[ ... ]林学春 2
作者单位
摘要
1 江苏大学机械工程学院, 江苏 镇江 212013
2 中国科学院半导体研究所全固态光源实验室, 北京 100083
利用纳秒脉冲激光对铜表面进行打黑处理,并使用分光光度计、光学表面轮廓仪、扫描电子显微镜(SEM)等对试样进行反射率、粗糙程度的测量以及微观结构的观察。选用单向填充式扫描方式研究了不同扫描间距对打黑效果的影响,发现在不同扫描间距条件下,打黑后会形成不同的微观结构(光栅状、近似光栅状、珊瑚状等),且减小扫描间距可以显著增加吸光率。其中,当扫描间距为10 μm 时,打黑后的样品在200~760 nm 波段的吸光率可达97%以上,在760~1110 nm 波段达到90%以上,而在1110~2500 nm 波段也保持在85%以上。此外,研究了二次填充对打黑效果的影响,发现打黑后样品的吸光率也较第一次打黑有一定提高,且不同填充方向的二次打黑所造成的吸光率的差异随着扫描间距的减小而逐渐减小。
激光光学 微纳米结构  吸光率 纳秒激光 
中国激光
2016, 43(3): 0303004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!